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Summary. Density functional approximations based on a local representation of 
the exchange energy tend to over-estimate bond energies. We show that the 
tendency is due to the incorrect form of the Fermi hole correlation function 
adopted by these methods. This function is adequate at the maxima of the radial 
density in isolated atoms, at the corresponding maxima of atoms in molecules, 
and at the saddle points of the molecular density in thebonding regions. 
However, the Fermi hole correlation function yields too low exchange energy 
contributions in absolute terms from the tails of the core shells and the valence 
density. On bond formation electron density is transferred from the tails of the 
atomic core shells to the density maximum of the valence shell. At the same time, 
parts of the atomic valence tails are transformed into the bonding region with a 
saddle point. In both cases the contributions from the tail regions to the 
exchange energy are under-estimated in the local approximation, with the result 
that the calculated bond energies are too large. Similar considerations can be 
used to explain why local exchange density functional methods under-estimate 
ionization potentials. 

The addition of non-local gradient correction terms to the local exchange 
functionals greatly improves calculated bond energies and ionization potentials 
by rectifying the qualitatively incorrect behaviour of the local Fermi hole 
correlation function in the tails of the core shells and the valence density. A 
detailed graphic analysis is provided of the contributions from non-local correc- 
tions to the calculated bond energies. 

Key words: Hartree-Fock-Slater exchange - Bond energy calculations - Gradi- 
ent corrections 

1. Introduction 

The Hartree-Fock-Slater (HFS) method is an exchange-only theory based on 
the local density approximation. The inadequacy of the local approximation for 
atoms, including its tendency to under-estimate atomic exchange energies, has 
been thoroughly investigated [ 1, 2]. Another shortcoming of the HFS-method is 
its tendency to over-estimate molecular dissociation energies, in particular for 
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metal-ligand and metal-metal bonds. In a series of pioneering papers, Becke 
[3-5], Langreth and Mehl [6], Perdew [7a,b] and others [7c-e] have eliminated 
many of the shortcomings of the local approach by introducing correction terms 
based on electron density gradients. The non-local correction terms greatly 
improve the calculation of atomic exchange energies [1, 3-7] and afford in 
addition bonding energies~ far superior to the HFS results [3-5, 8]. 

In a previous study [ 1] we have provided a detailed analysis of how non-local 
gradient corrections improve the calculated atomic exchange energies. Our 
analysis was based on the Fermi hole correlation functions [9] and we were able 
to demonstrate how non-local gradient terms rectify the qualitatively incorrect 
behaviour of the HFS Fermi hole correlation functions in the tails of the 
core-shells and the valence density [1]. 

The objective of the present study is to investigate how non-local gradient 
corrections influence calculations on bond energies. Our analysis will again be 
tied to the properties of the Fermi hole correlation function. We shall establish 
that the qualitatively incorrect behaviour of the HFS Fermi hole correlation 
functions in the tails of the core-shells and the valence density also are responsi- 
ble for the over-estimation of bond energies in the local approximation. We shall 
further demonstrate how the non-local corrections improve the calculated bond 
energies by rectifying the qualitatively incorrect behaviour of the HFS Fermi 
hole correlation functions. Our analysis will finally be extended to the calculation 
of ionization potentials. 

2. The exchange energy and the Fermi hole correlation function 

We shall begin by introducing a few concepts of importance for a discussion of 
the electronic exchange. The exchange energy is defined as: 

1 
[ ~] (e') Q~---0:' ' ~2) d~2; 7 = a ,  fl (1) 

E~ --2 3 r12 

where Q]((1) is the one electron density and Q~(~,, ~2) the Fermi hole correlation 
function. E~ is completely determined by the spherical average of the hole 
correlation function [9]: 

0~"(~,, s) = 4n Q~ (r,, r, + g) 6~s, (2) 
, )  

with i, + g = e 2 and s -= r, 2 = ]gl' Thus [9]: 

It is important to note that the Fermi hole correlation function is normalized to 
unity. Eq. (3) can be recast as: 

f '; E~ = ~(e,)  dl, = ~  e](el)vF~(~,) de,, (4a) 

with 

(4b) 
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The term V~'(ii) represents the Coulomb potential due to the spherically 
averaged Fermi-hole correlation function 0~(il, s). We shall refer to V~'(il) and 
e~'(il) as the exchange potential and the exchange energy density, respectively. 

The hole function in the HFS method is based on the approximate expres- 
sion: 

• " - (~);~) cos(k)~s)] 
0~'(¢~, s) ~ O];~(~l, s) = 9" Qi(i,) [sm(k}s) (k~ S)6 , (5) 

where k~ = [6zc2~ (~)] 1/3. It is characteristic for the approximate hole function, 
0 ~ ( ~ ,  s), that it has its principal maximum at s = 0 irrespective of the position 
of ~ ,  see Fig. la. The exchange potential in the HFS-method is given by: 

9 / 3 \1/3 
V~. (~l) = --~0~ x . Q ~ )  [Q~(~i)] 1/3, (6) 

with ~x = 2/3, as it follows from Eq. (5). In some applications, the term ~ is 
used as an adjustable parameter, with the optimal value of c~ = 0.7. 

The local description of exchange has a number of deficiencies as discussed 
in more details in a previous study on atomic systems [1]. The deficiencies are 
related to the fact that the approximate hole-function 0 ~ ( i l ,  s) has its maximum 
at s = 0 for all positions of ~ [1]. This feature is manifestly incorrect when ~ is 
in the tails of either the core shells or the valence shell [1]. In those regions the 
exact function has its maximum at s > 0, see Fig. lb. It follows further from Fig. 
lb that the function 0 ~ ( i ~ ,  s) is too diffuse in the tail regions and it can readily 
be shown [1] that the corresponding potential, V7~(~1), is too weak. The shape 
of 0];~(~, s) is much more adequate at the maximum of the radial density r~p] 
in any atomic shell. Here, the exact function has also its maximum as s = 0, Fig. 
la. At such maxima V~,(~) resembles closely the exact exchange potential for 
atoms. 

Simple non-local corrections to the HFS exchange have been developed in 
the past years [3-6] in order to rectify some of the deficiencies of the local 
theories delineated above. The potential in the non-local theories is given by 
[3-6]: 

V;/Ne(~,) = V~( i l )  + V~c(ii), (7) 

where the non-local correction to the exchange potential, V~c(i~), can be 
expressed as: 

VGC (/'i) fix (Z~')2[e'~(¢I)]I/3G[z3'] " dp , ,  (8a) 

where 

Z 7 ~ -  [ Q ~  ( ig  1 ) ] 4 / 3 ,  

and fix is a numerical parameter. 
In general, the term G[gq in Eq. (8a) has the properties of a cut-off factor 

which vanishes asymptotically for large values of Z ~'. A particularly appropriate 
form for rz~,~ If ) has recently been developed by Becke [5a]. Becke's correction vGC \ 1 
has the property that the corresponding potential of Eq. (7) has the correct 
asymptotic limit of -1 / r l  for atoms. This represents an improvement over the 
simple local potential V ~ ( ~ )  with its unphysical exponential asymptotic limit• 
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Fig. la,b. Ar atom: the spherically averaged Fermi hole correlation functions 01"(fl, s) (exact 
Hartree-Fock), QY~(rl, s), and O~L(~I, s). a At the nucleus (maximum of the K shell), b In the tail 
of the valence shell (r 1 = 2.5 a.u.) 

We shall adopt the expression given by Becke [5a] throughout the following 
discussion. 

A comparison between the exact Fermi hole correlation function, the local 
expression of Eq. (9), and the non-local Fermi hole correlation function is shown 
in Fig. 1. The non-local Fermi hole correlation function is represented by 
themodel expression of Tschinke and Ziegler [1]. The non-local hole correlation 
function differs only slightly from ~ (fl, s) at the density maxima, where the exact 
function ~(f~,  s) also has its maximum at s = 0. However, it differs significantly 
from ~ ( ~ 1 ,  s) in the tail regions where it takes on a maximum at s > 0 in analogy 
with the exact function ~7(~ 1 , s), Fig. lb. The non-local corrections to the 

77 potential is depicted in Fig. 2. Figure 2a exhibits the gradient correction V~c(rl) 
for the N-atom. The correction has a local minimum at rl = 0, increases at the 
edge of the K shell and then decreases again at the density maximum of the valence 
shell. Finally the correction increases at the onset of the valence density tail. Not 
surprisingly, the gradient correction for the N2 molecule reveals a similar shell 
structure and analogous asymptotic behaviour, see Fig. 2b. However, some 
differences can be observed, most notably in the bond region. We shall discuss 
their implications for the calculation of bond energies in the next section. 

3. Non- local  corrections to the bond energy 

We display in Table 1 the dissociation energies of several diatomics as well as the 
dimerization energies for CH(~) (n = 1, 2, 3). The computational methods include 
the HFS-, LDA- [10], and LDA/NL- [3] schemes. The LDA (Local Density 
Approximation) method adopts the HFS energy expression augmented by accu- 
rate local correlation corrections [11] for electrons of opposite spins. The 
LDA/NL contains further the gradient correction to the exchange given in 
Eq. (7). 
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Fig. 2. The gradient correction to the exchange potential for the N atom. The plot gives the average 
- [0~ w~ ± ~ .  ~ =-- - - G C -  ~] V~c]/(~ ~ + ~ ) .  b The gradient correction - V ~ c  V~c of  the N 2 molecule 
along the bond axis. c Deformation density for the N 2 molecule; the mid-bond region is located at 
- 1.035 a.u. 

The bond energies calculated by the HFS method are seen to be too large 
in most cases. Further, as opposite spin correlation is included (LDA-method) 
the calculated bond energies are always too large compared to experiment, with 
the exception of the Li2 molecule (vide infra). Gradient corrections [5a] to the 
HFS exchange (LDA/NL) bring the calculated values [4, 5b, 7] to within a 
few tenth of eV from experiment. We shall now demonstrate that there is a 
direct connection between the qualitatively incorrect behaviour of O~(~l,s) 
and the tendency of the local method to over-estimate bond energies. We 
shall further illustrate how the deficiencies are rectified by the non-local 
corrections. 

Consider as an example the N2 molecule for which the non-local correction 
is essential to bring the calculated bond energy in-line with experiment, Table 1. 
The contribution from the gradient correction to the bond energy is given 
by: 

EBOND ~BOND AExN L AExHFS 
N L  - -  x "  H F S  ~ 

lfd~,~[~O],A(rl)V~dc.A(rl)--~,M(i,)Vgc,M(r~) j, (9) 
2 

where the index A indicates a sum over atoms and M represents the molecule. 
The argument of the integral in Eq, (9) is depicted in Fig. 3 for the N 2 

molecule. It is predominantly negative, consistently with the fact that gradient 
corrections will reduce the bond energy, Table I. We note two significant 
contributions from the gradient correction. One is found close to each N nuclei 
and the other in the mid-bond region. We shall now in turn discuss the 
contribution from each region. 
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Table 1. Dissociation energies (eV) 

V. Tschinke and T. Ziegler 

HFS ~ LDA a LDA/NL ~'b Exp5 

H 2 3.5 4.9 5.1 (+0.2) 4.75 
Li 2 0.3 1.0 0.9 ( -0 .1)  1.14 
B 2 3,5 3.9 2.8 ( -  1.1) 3.0 
C 2 6,2 7.3 5.6 ( - 1.7) 6.36 
N2 0.09 11.2 9.81 ( - 1.4) 9.91 
02 6.85 7.35 5.26 (-2.1)  5.21 
Fz 3.18 3.34 1.81 ( - 1.5) 1.66 
Na2 - -  0.9 0.7 ( -0 .2)  0.7 
AI 2 - -  2.0 1.3 (-0.7)  1.6 
Si 2 - -  4.0 3.1 ( -0 .9)  3.2 
P2 - -  6.2 5.0 ( - 1.2) 5.1 
S 2 - -  5.9 4.5 ( - 1.4) 4.4 
C12 - -  3.6 2.3 ( - 1.3) 2.5 
CO 11.84 12.68 10.81( - 1.9) 11.08 
NO 7.03 8.36 6.66 ( - 1.7) 6.62 
2CH--* CzH2 d 11.20 1 1 . 5 7  9.43(-2.2) 10.26 e 
2CH 2 ~ C2H4 d 7.24 8.46 7.02 ( - 1.5) 7.07 e 
2CH2 ~ C2H6  d 4.32 4.81 3.40 ( - 1.4) 3.82 e 

a All calculated values from Becke AD [5], except N2,  F2,  C O ,  NO, and CH(,) 
dimerization energies, from Tschinke V and Ziegler T [7]. A value of c~.~ = 2/3 was 
used for all the results in the Table, except for the HFS calculations from Ref. [7], 
for which a value of c~ x = .7 was adopted 
b In brackets, gradient correction to the bond energy. Beck used the non-local 
functional of Ref. [5a], Tschinke and Ziegler the non-local functional of Ref. [4] 
°Huber KP, Herzberg G (1979) Molecular spectra and molecular structure IV: 
constant of diatomic molecules. Van Nostrand Reinhold, New York 
a Dimerization energy 
e (a) Darwent B deB (1970) Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.A.) 31 
(b) "JANAF Tables of Thermochemical Data", Nat. Stand. Ref. Data Ser., Nat. 
Bur. Stand. (U.S.) 37 (1971) 

(a) The atomic core region. F i g u r e  2c d isp lays  the  c h a n g e  in e l ec t ron  dens i ty  on  
b o n d  f o r m a t i o n .  I t  fo l lows  tha t  dens i ty  is r e m o v e d  f r o m  the  co re  region.  Th i s  
r e m o v a l  is a s soc ia t ed  wi th  a p r o m o t i o n  o f  cha rge  f r o m  the  2s-  to  the  2p -o rb i t a l  
as the  b o n d  is f o r m e d .  Since it has  a n o n ,  ze ro  va lue  at  the  nuc leus ,  the  
2 s -o rb i t a l  pene t r a t e s  in to  the  c o r e  r eg ion  to a g rea t e r  ex ten t  t h a n  the  2p-  
orb i ta l .  Thus ,  w h e n  the  p r o m o t i o n  to the  2p -o rb i t a l  t akes  p lace ,  e l ec t ron  
dens i ty  is sh i f ted  f r o m  the  co re  r eg ion  to  the  va l ence  r e g i o n  o f  the  a t o m .  T h e  
co re  r eg ion  is d o m i n a t e d  by  the  tai l  o f  the  I s -o rb i t a l ,  whi le  the  va l ence  r eg ion  
is d o m i n a t e d  by  the  m a x i m u m  o f  the  rad ia l  dens i ty  in the  L-shel l .  T h e  H F S  
a p p r o x i m a t i o n  unde r - e s t ima te s ,  as a l r e ady  m e n t i o n e d ,  the  c o n t r i b u t i o n  to  the  
e x c h a n g e  ene rgy  f r o m  the  co re  tai l  whe rea s  it is a d e q u a t e  at  the  m a x i m a  o f  the  
rad ia l  densi ty .  T h e  p r o m o t i o n  energy ,  in wh ich  dens i ty  is sh i f ted  f r o m  the  co re  
tai l  to  the  va l ence  m a x i m a ,  is as a c o n s e q u e n c e  u n d e r - e s t i m a t e d  in the  H F S  
theory .  Th is  e r ro r  will  la rge ly  c o n t r i b u t e  to  the  genera l  o v e r - b i n d i n g  wh ich  is so 
cha rac t e r i s t i c  fo r  the  local  m e t h o d s ,  T a b l e  1. T h e  p o o r  r e p r e s e n t a t i o n  o f  ns to  
np p r o m o t i o n  energ ies  in the  loca l  a p p r o x i m a t i o n  is i l lus t ra ted  in Fig.  4 for  the  
N ,  O, and  F a toms .  
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energy of  the N 2 molecule, see 
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Fig. 4. 2s ~ 2p promotion energies for the N, 
O, and F atoms, in eV. ( ): experimental 
values; ( - - - ) :  HFS + gradient correction; 
( - - - ) :  HFS method 

The gradient corrected theory of Eq. (7) provides on the other hand an 
adequate estimate of the exchange energy contribution from the core tail as well 
as the radial density maximum. The calculated non-local bond energies (LDA/ 
NL) in Table 1 are as a consequence better in line with experiment. It is further 
illustrated in Fig. 4 that the non-local correction improves the calculated ns to an 
np promotion energies. Gunnarsson and Jones have previously suggested a 
connection between the inability of the local approximations to calculate promo- 
tion energies accurately and their tendency to over-estimate bond energies [ 12]. 
We shall now discuss another error source located in the bonding region. 
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Fig. 5a,b. The spherically averaged hole correlation functions O~(fl,s) and 0 ~ ( i t , s ) ;  a for the 
N-a tom at a distance r~ = 1.44 from the nucleus; b for the N 2 molecule at the same distance from the 
nucleus as in a), at 1 a.u. on the line bisecting the bond axis 

(b) The molecular bonding region. Parts of the atomic valence tails are gradually 
transformed into the bonding region as the two N atoms approach each other. 
For a reference electron positioned in the region of transformation, the spherically 
averaged Fermi hole correlation function 0~r changes its shape from that typical 
of an atomic valence tail, with its maximum at s > 0, Fig. 5a, to the shape 
characteristic of a region dominated by density accumulation, with its maximum 
as s = 0, Fig. 5b. The HFS method represents the tail region poorly with an 
inappropriate hole function 0~-~, see Fig. 5b, and a potential V~(~1 ) that is much 
too weak. The bonding region generated after the formation of the molecule is 
on the other hand described more adequately by the HFS method, both with respect 
to the hole function ~ ,  see Fig. 5a, and the potential V~(~I). The imbalance 
between the HFS-description of the valence tail present before the bond formation, 
from which the contribution to the total atomic exchange energy is too small in 
absolute terms, and the bond region present after forming the molecule, from which 
the contribution to the total molecular exchange energy is adequate, will further 
enhance the tendency of the HFS method to over-estimate bond energies. 

The non-local theory rectifies this imbalance by introducing a stabilizing 
correction, V~c(fl ), to the potential in the tail of the atomic valence density, Fig. 
2a. V~c(i l) is instead negligible in the molecular bonding region (Fig. 2b). The 
bond energies calculated by the non-local corrections are as a result reduced 
considerably, Table 1. 

4. Extensions to different and larger molecules 

The discussion presented for the N 2 molecule can be applied as well t o  other 
diatomics. The contributions from the gradient correction to the bonding energy 
is depicted for the B2, C2, 02, and F 2 molecules in Fig. 6. The general behaviour 
of the correction is similar to the case of the N2 molecule. A destabilization from 
the 2s--*2p promotion is observed around each nucleus. Also, destabilizing 
contributions are observed in the mid-bond region. In all cases the gradient 
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Fig. 6a-c. Plots of the gradient correction to the bond energy for B2, C2, 02,  and F2 molecules. 
Coordinate specifications as in Fig. 3. All values are multiplied by the factor r equal to the radial 
distance from the bond axis. Solid lines: positive and zero values; dotted lines: negative values, a B2 
molecule, b C2 molecule, e 02 molecule, d F 2 molecule. Contour line increment is 0.001 a.u. 

correction is essential to ensure good agreement of the calculated bond energies 
with experiment, see Table 1. 

The gradient corrections to the bond energy of the Li2 and the H2 molecules 
are depicted in Fig. 7. The correction around each nucleus is minimal since the 
promotion energy contribution is either totally absent (H2) or rather small (Li2). 
Further, hydrogen and lithium have rather diffuse valence orbitals [ 13] compared 
to the bond distances in H2 and Li2, respectively. At rather large distances from 
the nuclei where the gradient correction is important, the density and its gradient 
are of similar magnitude for the molecule and the isolated atoms. Thus, the 
expression of Eq. (9) is small everywhere at large distances from the nuclei. 

The gradient corrections to the bond energies of second row diatomics follow 
closely their first row counterparts. Thus Na2 has a small correction by analogy 
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Fig.  7. Plots of the gradient correction to the bond energy for the H 2 and Li 2 molecules. Coordinate 
specifications as in Fig.  3. All  values are multiplied by the factor r equal to the radial distance from 
the bond axis. Solid lines: positive and zero values; dotted lines: negative values, a H2 molecule; 
Contour line increment is 0.0005 a .u .  b Li 2 molecule; contour line increment is 0.001 a .u .  

with the Li 2 molecule, while the diatomics from A12 to C12 are characterized by 
larger corrections. 

Bond formation between molecular fragments can be analyzed in the same 
way as bond formation between atoms. Consider for instance the dimerization of 
CH, CH2, and CH3 to form ethyne, ethene, and ethane. Table 1. By isolobal 
analogy, the first bond is related to N2, the second to C2, whereas the last is 
related to F 2. We find again that the gradient correction significantly improves 
the calculated bond energies. 

The tendency of the HFS and LDA methods to over-bind molecular frag- 
ments is particularly evident for transition metal complexes. Recent work [14] 
has shown that the gradient correction is able to bring the calculated bond 
energies to within 10-20kJmo1-1 of the experimental values. Several such 
examples are reproduced in Table 2. 

Table 2. Bond energies a (kJ mol - I )  

H F S  L D A  L D A / N L  Exp.  

H M n ( C O ) 5  b - -  - -  225 213 
C H  3 M n ( C O ) 5  b - -  - -  153 153 
H C o ( C O ) 4  b - -  - -  230 238 
C r ( C O ) 6  c 272 276 147 162 
M o ( C O ) 6  c 226 226 119 126 
W ( C O ) 6  c 238 247 142 166 
Fe (CO)5  c 263 263 185 176 
N i ( C O ) 4  c 188 192 106 104 

a Ziegler et al. [14] and references therein, e.~ = 2 / 3 ,  
(c~,. = .7). Non-local functional of  Ref.  [4] 
b M - H  or  M - C H  3 dissociation energy 
c First metal-carbonyl dissociation energy 

except for the HFS results 
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The Hartree-Fock method contains by definition the exact Fermi hole 
correlation function. The non-local corrections are based on a Taylor expansion 
of the exact Fermi hole correlation function ~!~'(~l, s) about s = 0 [1, 3]. Thus, they 
reproduce the behaviour of the HF-hole function for small values of the inter- 
electronic distance, s. For isolated atoms, this is sufficient to align the values of 
the non-local expression to the Hartree-Fock values, as already shown in Fig. I. 

For this reason, it might seem somewhat puzzling that the "exact" HF 
exchange theory in many instances fares poorly in molecules compared to HFS 
and its non-local extension. Thus, bond energies calculated by the HF method 
deviate [15b,f] by as much as 5 eV for some of the molecules displayed in Table 
1. The deficiencies of the HF method have been studied extensively for molecules 
[15]. The molecular HF-hole function, O~hv(~l, s), is very diffuse [15c-d] as a 
function of the inter-electronic distance, s, for certain positions of ~1, in particular 
in the limit of bond dissociation. This deficiency is often referred to as the 
near-degeneracy error. It can be rectified by a limited configuration interaction 
treatment [15a,e]. The hole functions of the HFS method and its non-local 
extensions do not have the same inappropriate shape for large values of s [15c-d] 
as 0~V(~l, S) does. As a consequence they do not suffer from the near-degeneracy 
error introduced by the HF-method. A more detailed discussion of these points 
has been given elsewhere [15c-d]. 

5. Ionization energies 

In Table 3, we compare calculated first and second ionization energies for a 
number of molecules with experimental values. The HFS-method provides too 
small ionization energies, whereas the larger LDA values are more in line with 
experiment. However, as shown in Table 3, the correlation correction to the 
HFS-method, while of the right sign, is not large enough to align LDA ionization 
energies with experiment, leaving some room - and need - for further improve- 
ment of the HFS-method. 

In Table 3 we present ionization energies given by the LDA method with the 
addition of gradient corrections, under the header LDA/NL. It follows from Table 
3 that the non-local correction in most cases increases the calculated ionization 
energies thus bringing the LDA/NL values closer in line with experiment than the 
LDA ionization energies. 

It is also evident that the LDA/NL ionization energies tend to depart from 
the corresponding LDA values to a lesser or greater extent depending on the nature 
of the orbital from which the electron is removed. For instance, the values for the 
first ionization energies o f N  2 and CO are increased by the gradient correction while 
the second ionization energies are in fact slightly decreased. Considering that the 
first ionization from N2 or CO involves orbitals of a-symmetry (la), whereas the 
second ionization involves orbitals of re-symmetry (lb), these results can be readily 
explained by recalling some of the arguments presented in Sect. 3. 

l__bb 
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Table 3. Ionization energies (eV). First and second ionization in the given order 

HFS ~ LDA a LDA/NL a Exp. b 

N 2 14.60 15.05 15.24 15.60 
16.6 16.95 16.81 16.98 

CO 12.81 13.50 13.85 14.01 
16.71 17.17 17.01 16.53 

F 2 14.78 15.02 15.34 15.70 
18.08 18.35 18.58 18.98 

H20 12.03 12.55 12.59 12.62 
13.95 14.46 14.60 14.75 

NH 3 10.06 10.62 10.76 10.88 
15.59 15.98 16.37 16.0 

CH 4 13.18 13.61 14.01 14.35 
21.20 21.50 22.00 23.00 

C2H 4 10.14 10.60 10.56 10.51 
11.84 12.22 12.75 12.85 

All calculated values from Tschinke V, Ziegler T [7]. e.~ = 2/3, except for the HFS 
results (ex = .7). Non-local functional of Ref. [4] 
b (a) Turner DW (1980) Molecular photoelectron spectroscopy. Wiley, New York 
(b) Cornford AB, Frost DC, McDowell CA, Ragle JC, Stenhouse IA (1971) J 
Chem Phys 54:2651 
(c) Karlsson L, Mattson L, Jadrny R, Albridge RG, Pinchas S, Bergmark T, 
Siegbahn K (1975) J Chem Phys 62:4745 
(d) Potts AW, Price WC (1972) Proc R Soc London A59:3863 
(e) Potts AW, Price WC (1972) Proc R Soc London A59:165 
(f) Brundle CR, Brown DB (1971) Spectrochim Acta A27:2491 

The a-orbital  l a  contains considerable 2s character,  while the n-orbital lb  is 
made up purely f rom p-orbi tals  due to symmetry constraints. The non-local  
correction is as a consequent  more  stabilizing for the a-orbital  l a  where the 2s 
penetrates the core region than it is for the n-orbital lb. We expect thus the 
non-local  correction to be larger for the ionization out  o f  the a-orbital  than out  
of  the n-orbital, and this is in fact what  is observed for the N2 and the CO 
molecules in Table 3. By contrast  the gradient correction terms are close in 
magni tude for the first and second ionization energies o f  the F2 molecule, 
involving a n * -  and a n-orbital, respectively, neither o f  which contain 2s-orbital  
contributions.  

The results presented in Table 3 for poly-atomics can be rationalized along 
the same lines o f  reasoning presented above. We shall briefly discuss the cases o f  
water. In  the water molecule, the first ionization involves the orbital 2a, whereas 
the second ionization involves the orbital 2b. Unlike 2a, the orbital 2b contains 
a contr ibut ion f rom the oxygen 2s-orbital. Thus, as expected, we find the 
gradient correction to be more  impor tant  for the calculated second ionization 
than for the first ionization. One should also note that the first ionization energy 
is fairly well represented by the simple L D A  calculation, while the less satisfac- 
tory  L D A  result for the second ionization energy is significantly improved by the 
gradient corrections. 
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6. Conclusions 

The HFS method represents the exchange potential V~(F~) adequately at atomic 
radial density maxima and in the bonding regions of molecules. However, the 
HFS potential V~(F1) is too weak in the tails of the core-shells and of the 
valence density. The inadequate representation of the exchange potential in the 
tail regions introduces two types of errors in the evaluation of bond energies 
which both tend to over-estimate bond strengths. The first stems from the 
promotion of density from the tails of the atomic core-shells to the density 
maximum of the valence shell on bond formation. The second is related to a 
transformation of parts of the atomic valence tails into the bonding region with 
a density maximum as the molecule is formed. The contributions from the tail 
regions to the exchange energy are in both cases under-estimated in the local 
approximation with the result that the calculated bond energies are too large. 

We have carried out a detailed graphical analysis of the non-local density 
gradient corrections pioneered by Becke [3-5] and others [6-7]. The analysis has 
demonstrated how the non-local corrections improve on the calculated bond 
energies by rectifying the qualitatively incorrect behaviours of the local Fermi- 
hole function in the tail regions. The non-local correction terms are further 
shown to improve uniformly calculated bond energies and ionization potentials. 
It should be mentioned that the LDA/NL results presented here were based on 
LDA wave-functions. The influences of the SCF effect on non-local density 
functional calculations are currently under investigation [16]. 
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